167 research outputs found

    05441 Abstracts Collection -- Managing and Mining Genome Information: Frontiers in Bioinformatics

    Get PDF
    From 30.10.05 to 04.11.05, the Dagstuhl Seminar 05441 ``Managing and Mining Genome Information: Frontiers in Bioinformatics\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    04231 Abstracts Collection -- Scheduling in Computer and Manufacturing Systems

    Get PDF
    During 31.05.-04.06.04, the Dagstuhl Seminar 04231 "Scheduling in Computer and Manufacturing Systems" was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Multi-agent model of hepatitis C virus infection

    Get PDF
    Objectives: The objective of this study is to design a method for modeling hepatitis C virus (HCV) infection using multi-agent simulation and to verify it in practice. Methods and materials: In this paper, first, the modeling of HCV infection using a multi-agent system is compared with the most commonly used model type, which is based on differential equations. Then, the implementation and results of the model using a multi-agent simulation is presented. To find the values of the parameters used in the model, a method using inverted simulation flow and genetic algorithm is proposed. All of the data regarding HCV infection are taken from the paper describing the model based on the differential equation to which the proposed method is compared. Results: Important advantages of the proposed method are noted and demonstrated; these include flexibility, clarity, re-usability and the possibility to model more complex dependencies. Then, the simulation framework that uses the proposed approach is successfully implemented in C++ and is verified by comparing it to the approach based on differential equations. The verification proves that an objective function that performs the best is the function that minimizes the maximal differences in the data. Finally, an analysis of one of the already known models is performed, and it is proved that it incorrectly models a decay in the hepatocytes number by 40%. Conclusions: The proposed method has many advantages in comparison to the currently used model types and can be used successfully for analyzing HCV infection. With almost no modifications, it can also be used for other types of viral infections

    RNA FRABASE 2.0: an advanced web-accessible database with the capacity to search the three-dimensional fragments within RNA structures

    Get PDF
    Background: Recent discoveries concerning novel functions of RNA, such as RNA interference, have contributed towards the growing importance of the field. In this respect, a deeper knowledge of complex three-dimensional RNA structures is essential to understand their new biological functions. A number of bioinformatic tools have been proposed to explore two major structural databases (PDB, NDB) in order to analyze various aspects of RNA tertiary structures. One of these tools is RNA FRABASE 1.0, the first web-accessible database with an engine for automatic search of 3D fragments within PDB-derived RNA structures. This search is based upon the user-defined RNA secondary structure pattern. In this paper, we present and discuss RNA FRABASE 2.0. This second version of the system represents a major extension of this tool in terms of providing new data and a wide spectrum of novel functionalities. An intuitionally operated web server platform enables very fast user-tailored search of three-dimensional RNA fragments, their multi-parameter conformational analysis and visualization. Description: RNA FRABASE 2.0 has stored information on 1565 PDB-deposited RNA structures, including all NMR models. The RNA FRABASE 2.0 search engine algorithms operate on the database of the RNA sequences and the new library of RNA secondary structures, coded in the dot-bracket format extended to hold multi-stranded structures and to cover residues whose coordinates are missing in the PDB files. The library of RNA secondary structures (and their graphics) is made available. A high level of efficiency of the 3D search has been achieved by introducing novel tools to formulate advanced searching patterns and to screen highly populated tertiary structure elements. RNA FRABASE 2.0 also stores data and conformational parameters in order to provide "on the spot" structural filters to explore the three-dimensional RNA structures. An instant visualization of the 3D RNA structures is provided. RNA FRABASE 2.0 is freely available at http://rnafrabase.cs.put.poznan.pl webcite. Conclusions: RNA FRABASE 2.0 provides a novel database and powerful search engine which is equipped with new data and functionalities that are unavailable elsewhere. Our intention is that this advanced version of the RNA FRABASE will be of interest to all researchers working in the RNA field

    Protein alignment algorithms with an efficient backtracking routine on multiple GPUs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pairwise sequence alignment methods are widely used in biological research. The increasing number of sequences is perceived as one of the upcoming challenges for sequence alignment methods in the nearest future. To overcome this challenge several GPU (Graphics Processing Unit) computing approaches have been proposed lately. These solutions show a great potential of a GPU platform but in most cases address the problem of sequence database scanning and computing only the alignment score whereas the alignment itself is omitted. Thus, the need arose to implement the global and semiglobal Needleman-Wunsch, and Smith-Waterman algorithms with a backtracking procedure which is needed to construct the alignment.</p> <p>Results</p> <p>In this paper we present the solution that performs the alignment of every given sequence pair, which is a required step for progressive multiple sequence alignment methods, as well as for DNA recognition at the DNA assembly stage. Performed tests show that the implementation, with performance up to 6.3 GCUPS on a single GPU for affine gap penalties, is very efficient in comparison to other CPU and GPU-based solutions. Moreover, multiple GPUs support with load balancing makes the application very scalable.</p> <p>Conclusions</p> <p>The article shows that the backtracking procedure of the sequence alignment algorithms may be designed to fit in with the GPU architecture. Therefore, our algorithm, apart from scores, is able to compute pairwise alignments. This opens a wide range of new possibilities, allowing other methods from the area of molecular biology to take advantage of the new computational architecture. Performed tests show that the efficiency of the implementation is excellent. Moreover, the speed of our GPU-based algorithms can be almost linearly increased when using more than one graphics card.</p

    An integrated model for the transshipment yard scheduling problem

    Get PDF

    Online and semi-online scheduling on two hierarchical machines with a common due date to maximize the total early work

    Full text link
    In this study, we investigated several online and semi-online scheduling problems on two hierarchical machines with a common due date to maximize the total early work. For the pure online case, we designed an optimal online algorithm with a competitive ratio of 2\sqrt 2. For the case when the total processing time is known, we proposed an optimal semi-online algorithm with a competitive ratio of 43\frac{4}{3}. Additionally, for the cases when the largest processing time is known, we gave optimal algorithms with a competitive ratio of 65\frac{6}{5} if the largest job is a lower hierarchy one, and of 5−1\sqrt 5-1 if the largest job is a higher hierarchy one, respectively

    Tabu search for the RNA partial degradation problem

    Get PDF
    ABSTRACT: In recent years, a growing interest has been observed in research on RNA (ribonucleic acid), primarily due to the discovery of the role of RNA molecules in biological systems. They not only serve as templates in protein synthesis or as adapters in the translation process, but also influence and are involved in the regulation of gene expression. The RNA degradation process is now heavily studied as a potential source of such riboregulators. In this paper, we consider the so-called RNA partial degradation problem (RNA PDP). By solving this combinatorial problem, one can reconstruct a given RNA molecule, having as input the results of the biochemical analysis of its degradation, which possibly contain errors (false negatives or false positives). From the computational point of view the RNA PDP is strongly NP-hard. Hence, there is a need for developing algorithms that construct good suboptimal solutions. We propose a heuristic approach, in which two tabu search algorithms cooperate, in order to reconstruct an RNA molecule. Computational tests clearly demonstrate that the proposed approach fits well the biological problem and allows to achieve near-optimal results. The algorithm is freely available at http://www.cs.put.poznan.pl/arybarczyk/tabusearch.php
    • …
    corecore